A classification of Minkowski planes over half-ordered fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermitian Forms over Ordered ∗-fields

Let D be a division ring with an involution. Assuming that D admits Baer orderings, we can study the Witt group of hermitian froms over D by observing its image in the ring of continuous functions on the space of orderings. We are led to define a new class of rings which, when viewed in an abstract setting, provide a natural generalization of the spaces of orderings and real spectra studied in ...

متن کامل

Tangent Segments in Minkowski Planes

AMinkowski plane is Euclidean iff the two tangent segments from any exterior point to the unit circle have the same length. MSC 2000: 52A10, 46B20, 46C99, 51M04

متن کامل

Moving Porous Half-Planes

A shear flow motivated by relatively moving half-planes is theoretically studied in this paper. Either the mass influx or the mass efflux is allowed on the boundary. This flow is called the extended Stokes’ problems. Traditionally, exact solutions to the Stokes’ problems can be readily obtained by directly applying the integral transforms to the momentum equation and the associated boundary and...

متن کامل

On the Classification of Four-Dimensional Quadratic Division Algebras over Square-Ordered Fields

A square-ordered field, also called Hilbert field of type (A), is understood to be an ordered field all of whose positive elements are squares. The problem of classifying, up to isomorphism, all 4-dimensional quadratic division algebras over a square-ordered field k is shown to be equivalent to the problem of finding normal forms for all pairs (X, Y ) of 3× 3-matrices over k, X being antisymmet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry

سال: 2000

ISSN: 0047-2468,1420-8997

DOI: 10.1007/bf01237486